Pointwise inequalities for Sobolev functions on generalized cuspidal domains

نویسندگان

چکیده

Let \(\Omega\subset\mathbb{R}^{n-1}\) be a bounded star-shaped domain and \(\Omega_\psi\) an outward cuspidal with base \(\Omega\). We prove that for \(1<p\leq\infty\), \(W^{1, p}(\Omega_\psi)=M^{1,p}(\Omega_\psi)\) if only p}(\Omega)=M^{1, p}(\Omega)\).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise Symmetrization Inequalities for Sobolev Functions and Applications

We develop a technique to obtain new symmetrization inequalities that provide a unified framework to study Sobolev inequalities, concentration inequalities and sharp integrability of solutions of elliptic equations.

متن کامل

Hardy-sobolev-maz’ya Inequalities for Arbitrary Domains

1.1. Hardy-Sobolev-Maz’ya inequalities. Hardy inequalities and Sobolev inequalities bound the size of a function, measured by a (possibly weighted) L norm, in terms of its smoothness, measured by an integral of its gradient. Maz’ya [22] proved that for functions on the half-space R+ = {x ∈ R : xN > 0}, N ≥ 3, which vanish on the boundary, the sharp version of the Hardy inequality can be combine...

متن کامل

Pointwise Characterizations of Hardy-sobolev Functions

We establish pointwise characterizations of functions in the HardySobolev spaces H within the range p ∈ (n/(n + 1), 1]. In particular, a locally integrable function u belongs to H(R) if and only if u ∈ L(R) and it satisfies the Hajlasz type condition |u(x)− u(y)| ≤ |x − y|(h(x) + h(y)), x, y ∈ R \ E, where E is a set of measure zero and h ∈ L(R). We also investigate HardySobolev spaces on subdo...

متن کامل

On some pointwise inequalities

In a recent paper (Studia Math. 138 (2000) 285–291) we proved pointwise estimates relating some classical maximal and singular integral operators. Here we show that, in a sense, there are more flexible inequalities which not only imply the previously known results but also give something new. In particular, they hold for the multilinear Calderón–Zygmund operators. This result gives a new approa...

متن کامل

Sharp Stability Theorems for the Anisotropic Sobolev and Log-sobolev Inequalities on Functions of Bounded Variation

Combining rearrangement techniques with Gromov’s proof (via optimal mass transportation) of the 1-Sobolev inequality, we prove a sharp quantitative version of the anisotropic Sobolev inequality on BV (R). As a corollary of this result, we also deduce a sharp stability estimate for the anisotropic 1-log-Sobolev inequality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Fennici Mathematici

سال: 2022

ISSN: ['2737-0690', '2737-114X']

DOI: https://doi.org/10.54330/afm.117881